| The quotient Rule
 d(u/v) /dx = (vdu/dx - udv/dx)/ v2
 For example:
 f(x) = y = cos(x)/sin(x) or y = cot (x)
 Let u = cos(x) v = sin(x)
 Then calculate u' = -sin(x) v' = cos(x) then substitute y' 	= (vdu/dx - udv/dx)/ v2  	= (sin(x)(-sin(x)) - cos(x)(cos(x)))/ sin2 (x) 	= -(sin2(x) + cos2 (x))/ sin2 (x) 	= -1/ sin2 (x) y'(.5)	= -4.35069 Check the result with nDeriv(tan-1(x),x,.5) nDeriv = -4.35070   if you can't remember what gets substracted from what. try something easy like d(x/1)/dx
 Let u  = x   and   v = 1  then
du/dx = 1   and  dv/dx = 0
 d(x/1)/dx = ((1)(1) - x (0))/ (1)2
= 1
 This is true, the derivative of x is 1
 |